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An Audio Texture Lutherie1

L O N C E  W Y S E L O N C E  W Y S E 

1 Russolo

N A T I O N A L  U N I V E R S I T Y  O F  S I N G A P O R EN A T I O N A L  U N I V E R S I T Y  O F  S I N G A P O R E

No one ever steps in the same river twice, for it’s not the same river 
and not the same person. 

—Heraclitus

1      Introduction

Audio textures comprise a class of sounds that are simultaneously stable 
at long time scales but complex and unpredictable at shorter time scales. 
In sound art practices, textures break from the pitched and metrical 
patterns of the past. Their complexity and unpredictability at one level 
combined with the sense of eternal sameness at another can be read as 
reflecting aspects of the last millennium of urbanisation, technological 
advancement, the rescaling of time and space through travel and 
communication, and the recent disruptions to rhythms and patterns due 
to a pandemic. Contemporary sound artists exploit the riches of audio 
textures, but their complexity makes them a challenge to model in such 
a way that they can be systematically explored or played like musical 
instruments. Deep learning approaches are well-suited to the task and 
offer new ways for the instrument designer to pursue their craft of 
providing a means of sound access and navigation. In this paper I discuss 
four deep learning tools from the sound modeler’s workbench, how each 
is the right tool for a different part of the job of addressing the various 
compelling aspects of audio textures, and how they can work artistically.

1.1     Historical Context

The incorporation of noise into art has been an ongoing process 
for well over a hundred years now. The history is deeply connected 
with socioeconomic evolution. The migrations from rural to urban 
environments disrupted the circadian rhythms of daily life. Machinery 
of the industrial revolutions immersed us in noisier soundscapes. These 
disruptions naturally found their way into artistic expression. Luigi 
Russolo’s suite of mechanical instrument inventions including roarers, 
scrapers, howlers, etc. were orchestrated in his composition Sounds of 
the City in 1923.1 Music was moving off the pitch-time grid to which it 
had long been bound, and the luthier’s concern would no longer be the 
‘warm tone’ mastered by Stradivarius.

Technological developments are also deeply entwined with the story 
of arrhythmia and noise in sonic artistic practice. Audio recording 
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brought the ability to ‘displace’ an original sound source in location and 
time as well as to capture and reproduce sounds exactly no matter how 
complex. Magnetic tape afforded rhythmic and arrhythmic reassembling 
of sound. Electronic circuits opened up access to a vast new space of 
sounds not previously accessible with acoustic systems. The digital 
computer can be inscribed with any sound-generating processes that 
can be written in mathematical or algorithmic form. The combination 
of physical, electronic and digital systems has given artists tools for 
sensing in any domain and mapping to arbitrary sound which broadens 
the possibilities for ‘instrument’ design almost beyond recognition.

This paper is about recent developments in the practice of instrument 
making, or to use a term less burdened by historical baggage, ‘sound 
modeling.’ The sonic focus will be on audio textures, a class of sounds 
far broader and more complex than the pitched sounds produced by 
traditional musical instruments, and thus reflective of the sound we 
now so freely accept in sound art. The modeling tools and techniques 
that will be discussed come from emerging developments in machine 
learning. The discussion is not meant as a scientific presentation of the 
tools but will attempt to share with the lay reader enough technical 
detail to appreciate how they work, and how they connect with various 
aspects of audio textures that might be explored for artistic purposes.

1.2     Audio Texture

An audio ‘texture,’ like its analogs in the visual and haptic domains, 
can be arbitrarily complex. Some examples include the sound of wind, 
radio static, rain, engines, air conditioners, flowing rivers, running 
water, bubbling, insects, applause, train, church bells, gargling, frying 
eggs, sparrows, jackhammers, fire, cocktail party babble, shaking coins, 
helicopters, wind chimes, scraping, rolling, rubbing, walking on gravel, 
thunder, or a busy electronic game arcade.

Artists use such sounds in a variety of ways such as incorporating 
sounding objects in performance and installations, or by recording 
sounds and possibly manipulating them electronically. Modeling 
the sounds or sounding objects so that they can be synthesised is a 
way of providing new possibilities for exploration, interaction, and 
performance. However, capturing the natural richness of textures in a 
computational model and designing interaction for them is challenging.

For the purpose of sound modeling, it is helpful to start by thinking of 
textures as either ‘stationary’ or ‘dynamic.’ Despite their complexity, for 
some long enough window of time, there is a description of a stationary 
texture that need not change for different windows of time (figure 1). 
Sitting next to a babbling brook, we hear the sound as ‘the same’ from 
minute to minute, even though we know that the sequence of splashes, 
bubbles, and babbles is never literally the same at two different moments 
of time. However, if it starts to rain, the brook would change due to the 
increasing rush and flow. We would describe the sound differently after 
the rain than before the rain, and this illustrates the dynamic aspect of 
an audio texture.
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The distinction between a stationary and dynamic texture is precisely 
analogous to the distinction between a note and a melody in terms 
of traditional instruments. The luthier factors out the interactive 
performative control from the sound generation. The sound of the 
different static configurations is characteristic of the instrument or 
model, while the dynamic sequence of configurations defines the 
imposed expressive or musical content. The sound generation is then 
conditionally dependent upon the instrument player’s parametric 
control through an interface.

1.3     Previous Texture Modeling Strategies

Computational sound modeling is typically a time and resource-
intensive process of writing code. There are a variety of approaches that 
address the complexity of textures.

One approach is to assemble sounds from a massive set of tiny pieces. 
Granular synthesis has been theorised and used by multiple musicians: 
Iannis Xenakis in “Formalized music: thought and mathematics in 
composition;” Barry Truax in his piece Riverrun and in “Real-time 
granular synthesis with a digital signal processor” and; Curtis Roads 
in his “Introduction to granular synthesis” and “Microsound.” The 
term is used to describe a family of techniques such as assembling 
windowed sine tones of varying frequencies and windows spanning a 
few cycles of the wave form. A related technique is called “granulation,” 
which breaks a recorded sound into tiny pieces before reassembling 
it.2 By specifying various distributions of grains in time, grain signal 
choices and window sizes, innumerable similar textures can be created. 
Related techniques include “wavelet analysis and resynthesis”3 and 
“concatenative synthesis.”4

Physical models simulate the actual physical behaviour of sound 
sources. Simulated plates, tubes, and strings are great for models of 
pitched instruments, but many physical systems generate more complex 

Fig. 1 
Left: As long as the rain falls at the same rate, we think of the texture as ‘the same’ even though the sound 

(as well as the image on the lake) is never literally identical at different times. 
Right: Wind changes at a slower time scale requiring a larger window of time than rain for a ‘stationary’ description. 

Image: Lake Superior Rain, Kate Gardiner, CC-NC

2 Truax

3 Dubnov et al.
4 Schwarz
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textures. For example, the sound of raindrops can be modeled with wave 
and acoustic pressure equations describing surface impacts.5 Other 
sounds derived from physical phenomena such as bubbling in liquids 
have been modelled based on fluid simulations).6 Rolling, scrapping, and 
rubbing sounds with a continuous interaction between different objects 
have been explored.7 Perry Cook developed an approach referred to as 
“physically informed” modeling for sounds such as rattles and footsteps.

1.4     A Paradigm Shift

There is a deep interdependence between the sound space that artists 
work with and the technologies available during the historical time 
in which they live. The recording technologies (phonographic and 
magnetic tape) of the early 20th century brought any sound producible 
in the physical world into the studio and on to the stage. Tape could 
be speed-controlled and spliced, and vinyl can be scratched, but it was 
the electronic instruments, and later, digital computers that seemed to 
promise that any imaginable sound could be synthesised and arbitrarily 
manipulated performatively. Still, even a synthesiser that can make ‘any 
sound’ has limits on the ways the sound space can be navigated. The 
quest continues for the holy grail of access to any and all sound arranged 
in a designable space for arbitrary navigation. That search is now 
conducted using the most power-hungry, cloud-based virtually served 
artificial intelligence machinery. It is driven by artists, engineers, and 
scientists who might only meet virtually in that same cloud immersed 
in a communication system that logs their every keystroke as data for 
AI analysis. Even the pandemic-driven physical isolation seems to drive 
this mode of production and communication that resonates so deeply 
with the technologies being developed for artistic exploitation.

Recent years have seen big data and deep learning models disrupt 
almost every scientific and technical endeavour, and it is no different in 
the world of sonic arts. Modeling, in particular for generative processes 
like image and sound synthesis, is now often data driven. Rather than 
providing a machine with explicitly coded algorithms that execute to 
produce sound, a learning system is trained to produce media given 
(usually lots of) data.

Seminal work in data driven modeling of audio textures was done 
by McDermott and Simoncelli. They studied the human perception 
of audio textures by generating audio examples to match extracted 
statistical measurements on noise samples. Their synthesis by analysis 
approach workswell on sounds with variation at shorter time scales but 
is less successful on sounds with longer-term structure.8 More recently 
Ulyanov and Lebedev modeled musical textures and others have since 
applied their approach to general purpose audio.9

The next section takes a deeper dive into four specific deep learning 
architectures that have been effectively used to address the challenge 
of synthesising complex and noisy data such as natural sound textures.

5 Miklavcic et al.

6 Moss, et al.; van den Doel

7 Conan et al.

8 McDermott and Simoncelli

9 See Antognini et al.; Grinstein et 
al.; Huzaifah and Wyse
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2      A Sound Modeling Toolset

To the uninitiated, the suite of tools in a violin-makers workshop are 
a large and curious-looking set. From thickness calibrators to router 
guides, peg hole reamers, gaugers, planers, and purfling tools, the 
specialised and motley collection bear names as colourful as the tools 
themselves. So it is for the modern-day sound model designer. In this 
section we will discuss four important tools hanging on the wall of 
the sound modelers workshop: The Generative Adversarial Network 
(GAN), the Self-Organizing Map (SOM), the Style-Transfer Network 
(STN) and the Recurrent Neural Network (RNN). I will furthermore 
give these tools more familiar nicknames: the Interpolator, the 
Smoother, the Variator, and the Performer (figure 2), which better 
describe their functionality. Like the tools on any workbench, each has 
its own function and using one to do the job of another can only lead 
to disaster.

2.1    The Interpolator

We have high demands and expectations for data-driven synthesiser 
design: when we train a system with data, we want a system that can 
generate not only the sounds in the training data set, but a ‘filled out’ 
space of sounds. That is, we demand that our system create novel 
sounds, even if such sounds do not come from the physical world. If 
we provide sounds of rain and the din of forest bugs as training data, 
then we expect to play a ‘morph’ on the new instrument in the same 
way we play a scale between pitches on a violin. The Interpolator (GAN) 
is a somewhat unwieldy tool for sound design, but it does construct a 
navigable high-dimensional space where in some regions it generates 
sounds like those in the data set, and for the rest of the space, it invents 
convincing ‘in-between’ sounds.

The tool gets its formal name (Generative Adversarial Network) from 
the way it is structured in two parts. The first part (the Generator) 
learns to organise a map from an input space of parameters to a set of 
sounds that are distributed similarly to the dataset. The second part (the 
Discriminator), is tasked with learning to recognise sounds from the 
Generator vs. sound from the database (figure 2(a)). The two networks 
are ‘adversaries’ as the Generator trains to fool the Discriminator. When 
training completes, and the Discriminator can no longer differentiate 
between the real and synthetic sounds, we have the Generator we seek.
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To appreciate the nature of this tool, the first thing to note is that 
it creates a map from a large number of input parameters to sound 
characteristics. This is what is meant by ‘creating a space’ for the 
sounds, and mapping is done by the tool, not the sound designer. The 
sound designer must figure out what the parameters actually do to 
the sound after training! Secondly, the number of input parameters 
is much larger than those we typically use to control an instrument. 
The network might require over 100 dimensions in order to organise a 
sensible space, but for an instrument to be playable by a human, it must 
offer a far smaller number.

Reflecting on how the Interpolator does its job, provides some insight 
into the relationship between technology and our historical times. The 
machine requires a certain amount of autonomy to do its job properly. 
We can provide some guidance by encoding and communicating our 
objectives, but we can not micromanage its organisation of the sound 
space. In fact, to meet our goals for synthesising and interacting with 
natural and novel sounds, there is generally far too much data address 
and the synthesis algorithms learned by the machine are too complex 
for mere mortals to organise or manually design. The process depends 
on yielding what may have previously been considered creative decision 
making to the machine.

The self-organisation and generation of novelty only address part of 
the playability requirements. A limitation of the Interpolator is that 
it learns long (e.g. 4-second) chunks of sound for each parameter, so 
is structurally incapable of being ‘played’ in response to continuously 
varying control parameters. Furthermore, it generates a single sound 

Fig. 2 
Left: Violin maker’s toolset.

Right: Sound modeler’s toolset, (a) The Interpolator (GAN) learns to create novel ‘tween’ sounds as the generator G trains 
to fool the discriminator D, (b) The Smoother (SOM) makes distances between sounds more uniform as it resamples the 

parameter space, (c) The Variator (SNT) creates stationary textural variations by matching network activation statistics of a 
target texture, and (d) The Performer (RNN) generates sound one sample at a time in response to parameters.

Image: Project Gutenberg EBook of Violin Making
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for each point in the space, not the infinite number of variations we 
associate with a texture of a given description such as the ever-changing 
sound of a river with a particular rate of flow. This is a job for the 
Variator described below.

2.2     The Smoother

The Interpolator distributes sound in a parametric space but does not 
necessarily do so evenly. That is, large parts of the space can be devoted 
to one or another type of sound and moving over the border from the 
territory of one to the territory of another might happen very quickly. 
We want to expand the transitions, and the great thing about the 
Interpolator’s space is that it can be zoomed infinitely. An analogy to 
this smoothing process would be zooming in on dusk and dawn so that 
they last as long as day and night.

The Smoother’s Self Organizing Map (SOM) can learn to create a map 
of a data distribution with a two-dimensional grid-like representation 
(figure 2(b)).10 Playing the remapped instrument, we would move 
quickly through the regions of sound space where nothing much 
changes as you navigate, and dwell in the unstable and changing regions 
between them. To exploit an acoustic instrument analogy again, it would 
be akin to removing the fret bars from a guitar which cause the pitch 
to be the same for fingering positions between them so that it would 
behave more like a (fretless) violin where changes happen smoothly as a 
finger glides along the neck. This is more natural for textures that do not 
lend themselves to standardised discrete scales in the way that legacy 
musical instruments do. It is probably not just an accident of history 
that we can see the less categorically punctuated and metrical lives we 
are now living reflected in the borderless sound space of textures that 
comprise so much sound art today. The Smoother is a tool that literally 
expands the space and time at narrow border regions turning them into 
spaces in their own right for the discovery of novel sound that might 
otherwise go unnoticed.

2.3     The Variator

The essence of textures is infinite variation, and for this we reach for 
another deep learning tool, the Style-transfer networks (STN). Most 
people have encountered STN’s in the image domain where they take 
style and textural elements from one image such as a painting to generate 
a variation on the ‘content’ of another11 (figure 3), thus our nickname, 
the Variator. It can also be used without content, to simply reproduce 
images with a similar texture to the original. The network can be used 
the same way for sound.

10 Kohonen 

11 Gatys et al.
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The way this tool works is that a segment of sound exhibiting the ‘target’ 
texture is fed into a neural network. Then the feature activation pattern 
of one or more network layers are correlated with each other in a time-
independent way. Features might represent anything from a short 
rhythmic pattern, to how pitched an event is. The matrices of feature 
characteristics are represented by the grids at the top of figure 2(c).

Next, we use the network and the target matrix of feature correlations 
to construct new sounds. We do that by feeding random noise into the 
network, deriving its feature characteristics and tweaking the noise until 
its feature’s characteristics match that of the target. When the process 
completes, we have a new sound with the texture of the target, but a 
different temporal structure or variation (figure 4).

This tool has a profoundly beautiful nature: the neural network that 
serves as the audio feature extractor need not be trained. The same 
network works as well for sounds of birds flying, rain falling, air 
conditioners humming, rocks rolling, or cattle bellowing. Indeed, the 
network need not be trained at all, and features can be entirely random. 
It seems to matter not what the audio features actually are, but rather 
what the pattern of relationships between features is.

The Variator also works on an aspect of textures that have a very 
particular alignment with a common experience of patterns of 
contemporary life in the time of a pandemic, and that is that it can 
create an endless series of sounds that, despite their infinite variety, all 
sound in some way ‘the same.’

In summary, the Variator generates variations of a static texture for a 
particular instrumental configuration. However, it does not provide the 
dynamic textures for which playable reconfigurations of instruments 
are required.

Fig. 3 Style transfer networks have been used in the image domain to superimpose the style of one image 
(van Gogh’s The Starry Night, inset) onto content from one image (left) to produce new images (right).

Images: Gatys et al. “A neural algorithm of artistic style”
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Fig. 4 The two rows correspond to two different dynamic parameter settings. 
Each column shows textural variations of the sound for those parameter settings. 

2.4    The Performer

The Performer is oriented toward generating sound sequentially in 
time, unlike the Interpolator and the Variator which generate fixed 
duration chunks of sound. It gets its formal name, Recurrent Neural 
Network (RNN), from the fact that the audio output from each step is 
fed back in as input along with the parameters to create the network 
state that produces the next sample (figure 2(d)). It provides the playable 
parametric interface for a musician and generates sound samples that are 
immediately responsive to parametric input from the instrumentalist 
one at a time.

When we train the Performer, we provide whatever parameters we 
want to use to interact with the sound. This network learns to map the 
parameters and the previous sound sample, together with its current 
state of activation, to the next sound sample in time. As instrument 
designers, we choose what the parameters mean by associating them 
with the specific sequences of sound we want the model to produce. 
Thus, if we want an interface parameter to control the ‘roughness’ 
of a scratching sound or the speed of a steam engine, we simply pair 
appropriate values for the parameter with the sounds we expect them to 
generate. The Performer learns the mapping.

The mapping from interface to sound need not be deterministic. That 
is, if we pair a ‘flow rate’ parameter to a rushing water sound, the 
model can, like the brook it is modeling, generate endless variations 
of the stationary processes associated with a single input parameter 
configuration, never repeating the exact same sound sequence. It is 
at the same time capable of a dynamic range of sounds responding to 
different configuration parameters—for example for flow rate.
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3      The Toolset Working as an Ensemble

No craftsperson would use a single tool for all jobs. The tools discussed 
above all have complementary strengths and weaknesses in the same 
way that a violin luthier’s router and purfling set do. As an example 
of texture instrument building, the Interpolator was trained on a set 
of one-second texture sounds from sound artist Brian O’Reilly, from 
which we extract a two-dimensional slice for dynamic musical control 
with two parameters.12 After the Smoother adjusts the spacing between 
sounds, the Variator generates extended stationary variations at each 
parameter point. Finally, the Performer is trained so that the sound can 
be generated continuously as the space is explored musically by a human 
performer. A visualisation of how the Interpolator, the Smoother, the 
Variator and the Performer all work together can be seen in figure 5 
and auditioned online at https://animatedsound.com/arrhythmia2021.

4      Final Reflections

The noisy and complex sounds that constitute such an important part 
of contemporary sound art practices are fiendishly difficult to model 
using traditional approaches to signal processing and computer 
programming. New deep learning approaches are synergistically 
evolving, with contemporary artistic interest in exploring the multi-
scale complexity of natural sounds that are situated in a world that is 
itself evermore computationally created, mediated, and richly textured.

The tools described herein are being explored by artists in a variety of 
media, representing a space of convergence for exploring themes such 
as creative partnerships with machines, questions of authorship, the 
incorporation of massive amounts of data in artistic production, and 
many others. Whether the machines are mobilised for text generation, 
choreography, visual arts, or music, they generally require a different 
mode of interaction with artists than traditional tools. Rather than 
explicit control through physical manipulation or programming, the 
artist might interact with the more autonomous tools by providing 
training data or communicating through visual or speech channels. 
Often the artist evaluates and curates the output from the machines. The 
style transfer network (Variator) is one such example that emerged first 
in the visual domain. The artist ‘guides’ its behaviour with target images 
for content and/or texture, but the machine makes the actual images (or 
sounds) for the artist. 

There are both aesthetic and functional reasons for striking different 
balances between control and indeterminacy in the tools described 
here and the creative use of sound they support. No claims about the 
right way to think about sound art are intended with this approach to 
sound modeling with its separation of control and texture generation. 
The practice of modeling and instrument interface design is necessarily 
explicit about which aspects of a sound are controllable and which are 
left open to textural variation, but the tool set we have been exploring 
supports various ways of making choices framing the way we hear, 
interact with, and make complex sound as part of the design process.

12 See https://vimeo.com/
dendriform
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The focus of this paper has been on modeling audio textures that 
extend our musical legacy of pitched sounds and regular metres. The 
data-driven instrumental sound design process also differs from a 
traditional lutherie in that it reflects a conception of a space of sound 
that is infinitely generative and configurable rather than one for which 
there could ever be a definitive set of canonical instruments for playing. 
While these new sound design processes are inextricably entwined with 
the very computational and communication technologies that too often 
oppress, surveil, misinform, and isolate us, they subvert these tendencies 
with their rich creative musical potential.
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