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32.1 Introduction

cellF is a collaborative project at the cutting edge of experimental art and music that
brings together artists, musicians, designers and scientists to create the world’s first
biological neuron-driven analogue modular synthesizer. It combines biological
material with electronic circuitry, presenting a new direction in music performance
and production. Advancements in biotechnology enable biological neural networks
to be grown in the laboratory and outside of the body, that is, in-vitro. Such entities
are directly linked to the human donors of their biological material, yet physically
removed from any human body. At the same time, these are living entities with a
degree of autonomy that grows and changes with an innate vitality in response to an
environment. Thus, in its autonomy and plasticity, cellF represents a new kind of
entity that can be described as possessing ‘in-vitro intelligence’, which is distinct
from both natural and artificial intelligence. The characteristics of autonomy and
plasticity demonstrated by cellF, which will be elaborated below, show not only
that it is a living musical instrument, but also a musician in its own right: a
‘surrogate musician’ who symbolically represents the human donor of its biological
material. cellF is a music-making hybridized entity: the biological neural network
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or ‘brain’ processes data, inputs and outputs, and is extended and embodied with
analogue synthesizers and other electronic analogue circuitry. This chapter argues
that cellF’s autonomy as a music-maker constitutes the description of surrogate
musician possessing in-vitro intelligence.

32.2 Origins and Development of the Work

cellF premiered in 2015 in Perth, Australia, and has since been featured in
numerous international festivals in collaboration with improvising musicians who
perform with cellF to create posthuman sound pieces. ‘Posthuman’ is used not in a
narrow sense that signals a hoped-for transcendence of the human body and its
materiality, which fails adequately to account for the complexity of corporeal
existence. Rather, we use the term as part of a broader critique of humanism and its
certainties regarding the value and agency of human beings, at the expense of
non-human entities. Led by artist Guy Ben-Ary, the cellF team consists of musician
Darren Moore, artist Nathan Thompson and electrical engineer Andrew Fitch, along
with scientists Stuart Hodgetts, Mike Edel and Douglas Bakkum. The project began
in 2012 when Ben-Ary received a Fellowship from the Australia Council for the
Arts to develop a biological self-portrait. An avid music lover, Ben-Ary wished to
realize a juvenile dream and portray himself as a musician. The fact that he could
not play any musical instruments was an issue addressed through Ben-Ary’s cre-
ation of a biological alter ego that could live out his fantasy.

A key objective of cellF is to use the raw neural activity occurring in its ‘brain’
to produce sounds (which resemble bursts of white noise) with analogue modular
synthesizers. The first step in its development was to harvest Ben-Ary's own bio-
logical material. He took a biopsy from his arm and, using induced pluripotent stem
cell technology (iPSc), transformed his skin cells into stem cells in the labs of
SymbioticA: The Centre for Excellence in Biological Arts at The University of
Western Australia. The process involved re-programming the cell’s genome back to
its embryonic state using iPSc technology that was pioneered by Professor Shinya
Yamanaka, who showed that the introduction of four specific genes could convert
adult cells into pluripotent stem cells. The iPSc method transforms adult specialized
cells into a form that is equivalent to stem cells, which are capable of becoming
almost any other type of cell in the body, such as liver cells, muscle cells or
neurons.

When differentiating to neurons, stem cells first transform into self-renewing and
multipotent neural stem cells, and then into neurons. In cellF, cultures of neurons
are grown in networks over a Multi-Electrode Array (MEA: a standard device that
connects neurons to electronic circuitry in order to send and receive neural signals)
to become Ben-Ary’s external ‘brain’ (Fig. 32.1). Human brains contain approxi-
mately 100 billion neurons, which are interconnected via trillions of synapses.
cellF’s ‘brain’ contains approximately 100,000 cells, making it a symbolic brain
that introduces new ways of thinking about intelligence in hybrid entities. Like a
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human brain, however, cellF’s neural network produces a large amount of data,
responds to stimuli and is subject to changes in behaviour and lifespan. Plasticity—
an organism’s adaptability to change—is a property of cellular, that is, natural
intelligence. Plasticity in neural networks is a phenomenon well established in the
neuroscience community, and one that is thought to play a very large role in
learning and memory [20]. cellF’s brain exhibits change in behaviour in response to
stimulations, demonstrating plasticity sufficient to entice audiences to consider the
future possibilities that iPSc technologies present.

The MEA dish hosting cellF’s neural network consists of a grid of sixty elec-
trodes connected to an array of analogue modular synthesizers that produce sound.
The activity of the neural network produces electrochemical data in pulses known
as action potentials that are received by the electrodes. These electrodes simulta-
neously send electrical stimulations back to the neurons in the form of synthesized
sound that is produced and controlled by a human musician. Thus, the system
allows data to move between cellF’s brain and electronic analogue circuitry so that
the neural network is able to respond in real time. In so doing, cellF demonstrates
autonomy: receiving inputs and spontaneously responding to them, as with bio-
logical life. Although one is biological and the other is electronic, surprising sim-
ilarities between neural networks and analogue modular synthesizers make them
well matched: both systems produce complex data sets, with multiple inputs and
outputs operating at micro-second speeds. Moreover, in both neural networks and
analogue modular synthesizers, electrical information moves through components
to produce data in the form of voltages. cellF’s neural interface creates a link
between these two networks such that it operates as a single entity, like a body and
brain working together.

Fig. 32.1 cellF’s ‘brain’:
Guy Ben-Ary’s neurons
growing over the
Multi-Electrode Array
interface
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cellF’s neural activity produces electrical signals that are received by the MEA’s
electrodes, which passes them into cellF’s specially designed interface. The inter-
face amplifies the signals from millivolts to volts and routs them to the synthesizers,
where they are transformed into control voltages (the standard analogue method of
controlling synthesizers). While the neural activity itself has no sound, the ampli-
fied electrical signals, transformed into control voltages, become synthesized
sounds by patching into the modular synthesizer. Patching manages sound tone and
pitch, and gate signals determine sounds as on or off; the innumerable patching
options available offer a multitude of pathways for the neural data to travel and
reflect the complexities of neural processes.

On one level patching choices are arbitrary and symbolic, with the patch cable
connections between the different synthesizer modules offering a metaphor for
synapse relationships in cellF’s brain that represents the activity of the action
potentials. Additionally, the team’s creative decisions are revised for each perfor-
mance, informed by such considerations as the nature of the performance space and
the collaborating human musician, whose performance takes into account which
frequencies will be received by cellF as a result of patching choices set up prior to
the performance. The configuration aims to balance unpredictability with a mea-
sured response that is akin to the interactivity occurring between improvising
human musicians, illuminating cellF’s autonomy. For each performance, the sound
is spatialized to sixteen speakers placed around the performance space, with the
neural activity controlling the signal paths to each individual speaker, such that the
speaker outputs spatially reflect the activity of the neurons in the MEA. This
spatialization amplifies and abstracts the neural activity, offering audiences the
opportunity to experience moving through cellF’s in-vitro brain in real time. cellF
requires the project team to set up the system, but once the performance starts it
operates autonomously (Fig. 32.2).

Fig. 32.2 cellF’s neural interface and sound producing body
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In order to survive and perform, cellF requires incubation, nutrition and an
interface with its embodiment. Incubation occurs within a tightly regulated envi-
ronment. Human neurons need 100% humidity at 37 °C with ambient gas levels of
CO2 at 5%, as well as near darkness or very low UV light. Human neurons grown
in-vitro need to be fed every forty-eight hours. cellF is manually fed, which requires
a trained person to extract and replenish the liquid ‘food’ in a completely sterile
environment; sterility is of utmost importance as contamination is fatal. cellF’s
development and ongoing existence demonstrate its autonomy, so long as the
conditions required to support its life are met. cellF’s plasticity is evident once the
system is embodied with synthesizers, which enables its transformation expressed
through sound. These characteristics support our claims, which will be elaborated
below, that cellF represents an early form of in-vitro intelligence. Before that, the
following section will explore some of the aesthetic concerns that informed cellF’s
design and creation.

32.3 Influences from the History of Modern Music

Composer and music theorist John Cage is significant to this project for his
pioneering use of electroacoustic instruments, as well as his philosophy of com-
position that decoupled the score from the sound of music in performance. Cage’s
influential 1937 essay ‘The Future of Music: Credo’ echoes the declarations of
Italian Futurist Luigi Russolo in claiming that noise will be an essential element in
the future of music (Cox and Warner 2001). Luigi Russolo was the first to attempt
to build noise-making instruments, intonarumori, and argued in the Futurist
Manifesto The Art of Noises (1913) that traditional orchestral instruments did not
adequately capture the spirit of modernity nor reflect the clamour of the machine
age (Cox and Warner 2001). Russolo called for new ways of making music that
incorporate ‘noise-sounds’, which, he argued, came into existence with the multi-
plication of machines. It is no longer controversial to consider any arrangement of
sounds as potentially musical, and cellF’s use of neural noise-sound heeds Rus-
solo’s call. Yet cellF’s connection with ‘The Art of Noises’ and intonarumori goes
beyond the use of noise as a musical element by reflecting Russolo’s concerns with
societal changes and the creation of instruments that critically engage with new
technologies.

Where the Italian Futurists celebrated new technologies and violence, cellF
critiques biotechnologies by using them in a subversive way. Rather than applying
iPSc to more strictly utilitarian ends, cellF proposes an absurd and futuristic sce-
nario in which biotechnologies are widely available. By using sophisticated
biotechnologies in a playful and complex work of art, cellF problematizes an
imagined scenario in which such technologies are ubiquitous and considered an
unexamined boon. This claim is supported by the creative team’s aesthetic choices.
Rather than embodying cellF with existing instruments, the team used innovative
visual and aural strategies that encourage audiences to explore the work, engage in
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a dialogue, and re-evaluate their perceptions and beliefs regarding musician-
ship. The work avoids the clinical aesthetics of the laboratory with which
biotechnological arts are more usually associated, opting instead for the dark
environment of a rock concert. With its large black spiral-shaped horn, cellF’s
design aesthetically recalls the history of amplified sound and the development of
twentieth century electronic instruments (Fig. 32.3).

Furthermore, a fascination with the inventive modernity that created the
gramophone, the intonarumori, and early electronic instruments has instilled itself
within the project through eschewing the digital in favour of the analogue. In
contrast with digital functionality, which symbolically represents all information in
binary code, analogue information is represented in continuously variable physical
quantities. Applying this preference to cellF has a twofold consequence; firstly, it
aesthetically references twentieth century modernity and imagines a world that
developed independently from the digital information age. cellF moves against the
prevailing technoscience trends that favour artificial intelligence and
computer-driven artistic practices towards the biological materiality and electrical
activity that defines our existence as living entities. Secondly, an analogue approach
highlights cellF’s intrinsically autonomous and unmediated nature. Whilst digital
interfaces such MATLAB are widely used in the scientific realm to interface with
neural networks, digitization requires the symbolic encoding of data. Rather, cellF’s
neural network interfaces directly with analogue synthesizers, retaining the integrity
of the neural signal and the autonomy of cellF’s brain. Similarly, stimulation inputs
in the form of sound received from the human musician performing alongside cellF
travel unprocessed through the interface (according to patching into the analogue
synthesizers), and cellF responds to the stimulations it receives with a barrage of

Fig. 32.3 cellF performing
in the Cell Block Theatre,
Sydney, 2016
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action potentials. cellF’s plasticity is realized, as with biological life, due to the
real-time changes in physical properties (in the form of electrical signals) occurring
between the neural and synthesizer systems that function as a single entity.

cellF’s synthesizers draw from the concepts of subtractive and additive synthesis
of classic Moog, Buchla and Serge systems of the 1960s and 1970s, and include
feedback systems (in which an output signal is received as an input signal,
increasing resonance) in order to highlight its self-organization. These feedback
systems share similarities with those devised by Gordon Mumma and David Tudor
in the 1960s and 1970s that Michael Nyman [13] describes as ‘feedback-type’
systems, ‘whose circuitry works in a way analogous to feedback but which are also
transformation devices’. The distinction here is that ‘feedback-type’ systems are
compositional technologies producing particular musical results that are not entirely
controlled by human musicians. For example, in Mumma’s Hornpipe (1967), a
horn is modified with an analogue computer that monitors the horn resonances and
complements them with further resonances that cause further sound responses.
Salter regards the feedback-type systems used by Mumma and Tudor as marking a
critical shift in experimental music, from an emphasis on the score (and hence the
composer) ‘towards the real-time manipulation of parameters, both musical as well
as those made possible through electronic circuits’ [17]. However, where Salter’s
analysis points towards a new model for composition, cellF moves towards an
autonomous system that requires minimal intervention due to the autonomous
nature of biological neural networks.

Two musical projects providing important historical reference points for cellF
are Alvin Lucier’s Music for Solo Performer (1965) and David Tudor’s Neural
Synthesis (1995). To present Music for Solo Performer, Lucier sat motionless in a
chair with electrodes attached to his head as he induced a relaxed state to produce
alpha brain waves. The alpha signals were used as a sound source that was
amplified through loudspeakers, which in turn controlled external percussion
instruments through the movement of speaker cones or the motion of the sur-
rounding air. Although the type of signal and musical instruments are different, both
cellF andMusic for Solo Performer use brain data to control instruments and render
visible and audible the unseen and unheard. Tudor’s Neural Synthesis (1995) used
integrated circuits that mimic neural activity as the central driver in an electronic
feedback system. Like cellF, Neural Synthesis used the unpredictability of elec-
tronic feedback systems to determine the musical output, a process entirely different
from scored music. cellF takes Tudor’s project to the next stage by using living
biological neural networks as the source for the feedback system.

Using feedback systems in new music grew out of John Cage’s radical reframing
of musical composition as a means of structuring events in time [13]. First per-
formed by David Tudor in 1952, Cage’s 4′33″ showed that composition was a
process with no determined relation to sound in performance. While Cage pio-
neered indeterminacy in composition by using chance processes at the level of
composition, performer choice was limited [8]. The increasingly important role of
performer choice in experimental music was realized in the works of Tudor,
Mumma and Lucier, whose works ceded some of the authorial control traditionally
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exercised by composers in order to open up new musical possibilities with elec-
tronics. As with improvising musicians, where composer and performer are one and
the same, their works gesture towards the self-organizing musical entities of the
future. However, where decisions made by an improvising human musician are
guided by training and tradition, cellF’s self-organizing musicianship is not. We
have established that cellF is a musical entity, and, like a human improvising
musician, both composer and performer. Emerging technologies of live music
production will develop new musical genres and new instruments. Of more interest
to the authors of this paper, future technologies of live music production will likely
develop new relations between bodies and instruments, where robotic musicianship
is one valid direction.

32.4 Influences from the Field of Robotic Musicianship

A number of Guy Ben-Ary’s earlier works have been influenced by the field of
biorobotics. MEART (2001) and Silent Barrage (2009) embodied rat neurons with
robotics to perform artistic functions (Ben-Ary 2014a, b). Each used the movement
of the robotic body to represent data. cellF departs from those works in two
important ways: by using neurons reprogrammed from the artist’s own skin cells,
and through a musical embodiment that uses electricity to generate sound. Although
there are no moving parts, cellF shares similarities with projects that deal with
robotic musicianship. Bretan and Weinberg’s survey of robotic musicianship
describes it as ‘the construction of machines capable of producing sound, analysing
music and generating music in such a way that allows them to showcase musicality
and interact with human musicians’ [4]. Robotic musicianship focuses on two areas:
musical mechatronics studies the physical systems that generate sound through
mechanical means, and machine musicianship develops algorithms representing
higher level musical features essential to human musical cognition. Two examples
illustrate these features.

Shimon, developed by Gil Weinberg (2017), is a robotic marimba player that
improvises with a human musician; see alsoWeinberg’s chapter in this volume. With
arms and a head that mimic human communicative gestures, Shimon creates familiar,
acoustically and visually rich interactions with humans.Moreover, Shimon’s artificial
intelligence produces musical responses that are unlikely to be achieved by humans
and so facilitates a unique musical experience, which may lead to innovative musical
outcomes. Shimon uses artificial intelligence to melodically respond to the human
musician’s movements and to learn from historical performances of great jazz
musicians [4]: 107). The human is the standard by which Shimon is guided, and
designed to exceed, which contrasts with cellF’s less familiar form of musician-
ship. Z-Machines (2018), a project by Yuri Suzuki Design Studio, is an all-robot band
built to perform beyond the capabilities of the most advanced human musicians. The
band members have an anthropomorphic appearance, with important differences:
Z-Machines features a seventy-eight-fingered guitarist, a drummer with twenty-two
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arms, and a keyboard player that triggers notes using laser beams. The robots have
collaboratedwith British electronicmusician Squarepusher, who composedMusic for
Robots (2014) for Z-Machines to perform. The challenge for Yuri Suzuki’s Studio
was to design a system that could play emotionally engaging music while rediscov-
ering conventional instruments. This, too, illustrates an important difference with
cellF, which deliberately avoided an embodiment recalling conventional musical
instruments, in order to encourage new modes of audience engagement.

Shimon and Z-Machines’ musical and analytical traits, as well as their visual
behaviour, extend our understanding of musicians and live music. These are
non-human musicians with the ability to play music, improvise, respond and per-
form original and complex music, at a level that was previously considered to be the
sole preserve of human musicians. While each project presents a distinct approach
and aesthetic style, they share a dependence on digital technologies and artificial
intelligence that drives the musicians’ behaviour, movements, analytical skills and
ability to learn. Artificial intelligence is grounded in algorithms that are pro-
grammed by humans to mimic cognitive functions such as learning or problem
solving. As is seen with the anthropomorphic appearance of Shimon and
Z-Machines, and their use of algorithms that are designed to mimic human func-
tionality, robotic musicianship is judged against the rubric of human musicianship.

In contrast, cellF eschews anthropocentrism in appearance and behaviour; it
does not use the human as the model against which other entities are judged. Where
robotic musicianship generally creates interest through the spectacle of complex
moving parts, cellF has none. The lack of movement works against ocularcentrism,
the perceptual and epistemological bias evident in Western culture that ranks vision
over other senses. Movement in robotic musicianship reveals the sound production
process, but with cellF, as with other electronic music, the sound production pro-
cess is obscured. cellF challenges Bretan and Weinberg’s definition of robotic
musicianship. It generates music and demonstrates musicality through interacting
with a human musician, but cellF is more than a machine: its body is void of
mechanics and it has a ‘brain’ that is made of living neurons. Audiences of cellF’s
performances with a human musician are required to interpret their experiences
primarily through sound, which encourages consideration of what is new and
challenging, and the future possibilities the experience suggests. It is a musical
entity with sufficient autonomy and plasticity to stand in for a human musician in an
improvised duet. It does so in a new way, as a living instrument existing outside of
a human body, in which musical instrument and musician are one entity.

32.5 In-Vitro Intelligence

cellF represents an interesting and provocative move away from Artificial Intelli-
gence (AI) enquiries that dominate our current technology-focused scientific dis-
course. It is not an AI musical robot driven by computer algorithms; at the same
time, it lacks the complexity of natural intelligence and requires a hardware body to
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provide stimulation for its in-vitro ‘brain’. As described above, cellF’s brain is
made of bioengineered living human neurons that are grown into neural networks,
interfaced such that inputs to and outputs from the networks control an array of
analogue modular synthesizers, making it a wetware-hardware hybrid. ‘Wetware’
refers to the networks of neurons and other cell types that form the control systems
of biological life. It is the basis of natural intelligence, which is contrasted with AI.

cellF is neither ‘naturally’ nor ‘artificially’ intelligent, yet it behaves in an
apparently ‘intelligent’ way. Russell and Norvig (2009) outline four main
approaches to understanding artificial intelligence that can be summarized as
thinking and behaving humanly, and thinking and acting rationally. Behaving like a
human, as in the familiar Turing Test [19], remains an accessible way to understand
artificial intelligence, reflected in the anthropocentric ideals of the examples of
robotic musicianship described above. In order to reach such an ideal, it is nec-
essary to understand the underlying principles of intelligence, and this goal is
pursued through cognitive modelling to enable machines to demonstrate
human-like learning and problem solving. However, it is important to note that
these are not the same as human intelligence, and that the principles underlying
intelligence are not well understood. Thinking and acting rationally extracts the
practice of human intelligence, which can accommodate a degree of uncertainty,
into generalizable theories subject to mathematical modelling, known as the
rational agent approach to artificial intelligence (Russell and Norvig 2009). This is,
at best, a flattened approximation of natural intelligence.

Artificial Intelligence, which in its current manifestations is more accurately
described as Machine Learning, requires vast amounts of data that can be searched
for patterns in order to make inferences, but thinking and intelligence are much
more complex and nuanced than that. AI has achieved incredible results in situa-
tions where it is possible to acquire a complete set of rules governing any given
situation. Consider the artificially intelligent computer program AlphaZero, which
is able to beat any human or AI player in games such as chess and go, by learning
from playing against itself more times than are possible for any other human or
machine. Where older versions of similar programs had learned from historic game
play (as Shimon learned to improvise by studying the historical performances of
great jazz musicians), AlphaZero learned from massive calculation alone and
achieved unlikely wins as a result. In information games like chess and go there is
no ambiguity in the rules and what constitutes ‘winning’.

The operations of natural intelligence, on the other hand, rely on much more than
calculation and rational decision-making. The operation of natural intelligence is
distributed across brain, body and world, and ‘it is in the operation of these
extended systems that much of our distinctive human intelligence inheres’ [5]. As
Andy Clark acknowledges, the notion of situated and distributed cognition is not
new. What is particularly useful in Clark’s analysis for our discussion of cellF is his
recognition of the ways in which human brains ‘dovetail’ their problem-solving
activities with technologies in order to form larger systems that change and evolve.
We draw attention to two important features of this plasticity in natural intelligence
to support our claims for cellF’s intelligence. The first relates to the liveness of
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change: it happens in real time, like a musical improvisation. More than the
information feedback required for machine learning, transformation can occur
because the system of natural intelligence is open to other systems in a ‘complex
reciprocal dance’; ‘the brain tailors its activity to a technological and sociocultural
environment, which—in concert with other brains—it simultaneously alters and
amends. Human intelligence owes just about everything to this looping process of
mutual accommodation’ [5]. The second important feature is that the other systems
with which human intelligence ‘dances’ are different from it. The use of hand tools
and the technologies of reading and writing are two of the more familiar examples
of technological and sociocultural systems that have wrought immense changes to
human thought, behaviour and society, as Havelock’s [10] and Ong’s (2012) the-
ories of the transition from oral to literate cultures show. We are Clark’s
‘natural-born cyborgs’: ‘Ours are (by nature) unusually plastic and opportunistic
brains whose biological proper functioning has always involved the recruitment and
exploitation of nonbiological props and scaffolds’ [5]. Natural intelligence has
evolved within a technological and cultural world from which it cannot be
definitively separated, and it is these complex relations that enable the plasticity
with which natural intelligence is distinctively associated.

Neither an artificial intelligence nor a natural intelligence, cellF falls within a
taxonomic void. In the absence of terminology that adequately accounts for cellF’s
autonomy and plasticity, demonstrated through its capacity to make music and duet
with a human musician, cellF is best understood as an entity possessing ‘in-vitro
intelligence’: an intelligent system produced by bioengineered living neural networks
that function as brains outside of the body. We grant that cellF represents a very early
form of in-vitro intelligence, yet the characteristics of its neural network suggest that
it, or others like it, will demonstrate changes in functional plasticity, just as naturally
intelligent entities do. The biological basis of in-vitro intelligence is subject to an
unanticipated change in a way that programmed AI entities are not. Artificial intel-
ligence will achieve increasing calculation speeds, but the fundamental processes will
remain the same, with a fixed material basis that constrains unanticipated change.
Like naturally intelligent entities, cellF’s hybridity constitutes an openness to other
systems that Clark and others argue supports the emergence of new intelligences: ‘it is
the semi-autonomous machines that hold out the best prospect of one day constituting
integral parts of distributed, biotechnological, hybrid intelligences’ [5]. Neurosci-
entist Steve Potter [15] claims it is inevitable that neural-synthetic hybrid entities will
grow more sophisticated and find widespread applications: ‘hybrid
wetware-hardware intelligent things will someday be as common and as useful as
digital computers are today’ [1, 15]. As a wetware-hardware hybrid, cellF suggests
just such an outcome, and we theorize its existence by developing a description for
this phenomenon as the emergence of in-vitro intelligence.

Such a phenomenon suggests some exciting possibilities. Artificially intelligent
entities are limited by the mathematically coded instructions they receive in sym-
bolic language, which restrains the degree to which they can accommodate ambi-
guity or complexity, such as is required for emotional engagement. Emotions are
too complex to be reduced to symbolic language and are inextricably linked to
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specific contexts and environments. On the other hand, an entity grounded in neural
networks exhibits some plasticity and so has the potential to achieve the openness
to other systems and real-time responsiveness required for emotional engagement.
Entities with in-vitro intelligence demonstrate meaningful connections to human
life not through human-like behaviour, appearances or thought, but through a
shared cellular structure that is soft and full of salt water. Indeed, cellF has direct
biological links to its donor. Its basis in biological life means that cellF is a living
musical instrument; moreover, in its capacity to produce music and engage with a
human musician in its human donor’s stead, cellF is a musician in its own right; a
‘surrogate musician’.

32.6 Surrogate Musicianship

Surrogate musicianship embodies the previously mentioned attributes of robotic
musicianship—the ability to produce, analyze and generate music in response to
sensory stimuli in real time—as well as combining musical instrument and musi-
cian in one living entity. Moreover, this new term offers something else: as is
signalled in its name, surrogate musicians like cellF have direct biological links to
their donors, enabling the surrogate to symbolically represent the donor, and,
potentially, to stand in for the donor in other ways (Fig. 32.4). Regardless of
whether the donor is a musician or not, human or not, they have some involvement
in the musical activities of the surrogate musician.

To consider the term ‘surrogate musician’, it is useful to look at one of the
situations with which it forms an analogy, that of surrogacy in human reproduction.
This is a form of assisted reproductive technology in which a woman carries and
gives birth to a baby on behalf of someone else. Gestational surrogacy involves the
surrogate being implanted with an embryo via in-vitro fertilization, so that the
surrogate is entirely genetically unrelated to the donors of sperm and egg. Tradi-
tional surrogacy uses donated sperm and the surrogate’s own egg, so that the
resulting baby is genetically related to the surrogate. Tracing the relevant terms of
reproductive surrogacy in the context of cellF aligns Guy Ben-Ary, as the donor of
biological material, with the role of the genetic parent. cellF is incubated in a fully
technologized manner, eliminating the role of the ‘surrogate mother’ in this sce-
nario. The resulting ‘child’ is cellF, the ‘surrogate musician’. The experience of the
child that results from a surrogacy arrangement is an under-researched area; a
systematic review revealed methodological limitations and uncertain results [18].
Risks related to the child’s knowledge of their origins and the implications for their
developmental psychology, and long-term health outcomes that are inextricably
linked to that of the genetic parents, which may include the surrogate mother. As
with all analogies there are limits to this one, and many of the issues that arise with
reproductive surrogacy are not relevant here. (These include legal complications
regarding the different laws pertaining to surrogacy in different jurisdictions; ethical
issues that relate to the situation of the surrogate mother and her right to enter into
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an altruistic or commercial arrangement, and the justice of such arrangements;
psychological issues impacting the surrogate mother such as feelings of loss upon
separating from the surrogate child.) Other issues arising in reproductive surrogacy
are relevant and can hint at the debates that will emerge as biotechnologies develop,
becoming more sophisticated and readily available.

Surrogate musicianship is a relational term that alludes to the connections
between donors and surrogates, not unlike that between parent and child in our
analogy. Reproductive surrogacy prompts consideration of the multiple meanings
of parenthood, which can be separated into genetic, biological and social dimen-
sions. It is clear that Ben-Ary is genetically related to cellF, and the case of
reproductive surrogacy shows that genetic parents experience a strong sense of
connection to, or ‘ownership’ of, their surrogate child [11]. Biological parenthood is
a category that alludes to gestation [9] and the connections between babies and the
surrogate mothers who have grown them from their own biological material, even if
the egg was genetically unrelated. The distinction between genetic and biological
parenthood is not clear cut, and the resulting medical and emotional connections
between surrogate mother and baby are not well understood. Yet, given the sig-
nificance the cellF project places on materiality, where biological and naturally
intelligent materials and processes are awarded a significance different from that of
artificially intelligent materials and processes, reproductive surrogacy offers a useful
model for imagining our responsibilities to future hybrid entities.

Fig. 32.4 cellF performing with defunensemble, Science Centre Heureka, Helsinki, 2019
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The concept of social parenthood is salient in the case of cellF’s surrogate
musicianship, and the lessons of reproductive surrogacy illuminate the symbolic
connection between cellF and its donor. The use of surrogacy as an assisted
reproduction technology by infertile and same sex couples (or other family
groupings) definitively shows that reproduction is not the same as parenthood.
Reproductive technologies in general reveal our understandings of what is ‘natural’
as a culturally constructed category. It is conceivable, then, that the bonds between
entities like cellF and their donors of biological material, as well as others who
contribute to their creation and care, will be powerful enough to guide human
investment of time and resources. Furthermore, social notions of parenthood draw
us away from the legal framework of rights, which does not universally apply to the
intended or surrogate parent, let alone to entities such as cellF, towards a framework
of social justice and the responsibilities we hold in living together, at a domestic
level and at a broader ecological scale.

Despite its limitations, then, reproductive surrogacy assists us in imagining ways
to consider how hybrid entities like cellF cannot be separated from broader con-
siderations of fairness and justice in social relations. The use of the term ‘surrogate
musician’ in describing cellF strategically assists us in imagining the significance of
the bonds between biological donor and the new entity that results, bonds that are
likely to strengthen as the entities develop. Furthermore, the complexities of
human-assisted reproductive technologies offer a useful lesson that illustrates the
ways in which the human desire for kinship can spur the development of new
technologies that races ahead of legal, social and ethical resolutions. To complete
this section, we will touch on some potential scenarios arising from surrogate
musicianship, and their implications for new music.

cellF plays with a human musician, but a surrogate musician may perform alone
or with other surrogate musicians; different manifestations of the same surrogate
might play simultaneously in different locations. A human musician could create an
external surrogate with their own biological material (or, for that matter, with
biological material from any other living being), as the non-musician Ben-Ary did
with cellF, and engage in musical activities with their own surrogate musician. The
future may see musicians offering their cell lines to preserve their musicality after
death. Surrogate musicianship might allow future generations of such entities not
only to generate music and demonstrate musicality by interacting with human
musicians, but also to interact with other surrogate musicians via a cultured inter-
face that includes other cell types along with neurons. For example, it is con-
ceivable that cochlear hair cells could be interfaced to stimulate a neural network
through vibrations, opening further avenues for creative inputs and outputs. The
possibilities are as diverse as the potential donors themselves.

If the surrogate musician symbolically stands in for its donor, as we have argued,
these scenarios present performance contexts that engage the imagination in new
ways. Surrogate musicians also have direct biological links to their donors,
allowing us to consider the possibility that in-vitro entities may manifest some
inherited musical traits from their donors of biological material. If a human
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musician is improvising with their own surrogate, their shared cellular material
might lead to them making similar responses to stimuli; it is conceivable that such a
scenario will produce innovations in improvised music.

32.7 Concluding Discussion

Western philosophy has long understood the world from an anthropocentric per-
spective that values human life, as entities with large brains and sophisticated
cognition, above other kinds of life, and uses the thinking brain as the primary
signifier of individual existence and sentience. Moreover, anthropocentric per-
spectives use the human as the analogic basis for rational arguments regarding
unfamiliar biological species or processes. New scientific discoveries increasingly
show the error of such thinking, where the threats posed by anthropocentric per-
spectives for ecological systems more broadly ultimately threaten human life as we
know it. Particularly relevant here are those discoveries that reveal species and
processes that fall between accepted categories. For example, Coley and Tanner’s
[6] illumination of misconceptions in biological thinking discusses programmed
cell death and disturbances in ecosystems as normal phenomena that, as a result of
anthropocentric perspectives on ‘death’ and ‘disturbance’, are thought of as
undesirable.

Biology as a field of enquiry is constantly engaged with trying to understand
what ‘life’ is; some characteristics are accepted, while others challenge our pre-
conceptions. Just as new scientific discoveries challenge accepted definitions, art-
works using neurons have the potential to shift perceptions surrounding our
understanding of ‘life’. cellF fulfils some of the accepted characteristics of life, such
as being composed of cells, growing and adapting to an environment, and
responding to stimuli. Other characteristics are harder to categorize. cellF depends
on technological support to sustain its life, but human brains too develop neat links
with technologies in order to form larger systems that change and evolve. cellF is
not a surrogate child in the common sense, but it is genetically related to a specific
human being. Cognitively and genetically, humans have much more in common
with non-humans than anthropocentric perspectives have traditionally allowed.
cellF challenges audiences to rethink categorical assumptions regarding what is
considered human and non-human, biological and technological, living and dead.

This chapter answers Eduardo Kac’s call for ‘a new critical vocabulary to meet
the intellectual challenge’ posed by living artworks like cellF [12]. We have argued
for the significance of cellF’s biological materiality as fundamental to our use of the
new terms in-vitro intelligence and surrogate musicianship. cellF’s current and
future plasticity, its adaptation to change, is founded upon the biological basis of its
neural network. We contrast this with the fixed material basis of artificial intelli-
gence, where proper functioning depends upon the stability of its constituent
metals, metalloids, alloys and plastics. Although the synthesizers and other elec-
tronic circuitry with which cellF is embodied are not cellular, both its neural
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network brain and analogue synthesizer body create and receive electrical infor-
mation. These analogue systems come together in cellF to create music that is an
expression of physical phenomena occurring in real time, in contrast with artificial
intelligence that plays out a complex set of pre-arranged instructions.

Future manifestations of in-vitro intelligence will produce surrogate musicians
that will neither be driven by chance nor determined by instruction, but be spon-
taneous and extemporaneous. The complexity and speed of information pathways
will facilitate their capacity to perform nuanced operations in real time, in response
to audible, and potentially visual, stimuli. These living entities will be both the
instrument and the musician, with a seamless flow from input to output. The
biophysical and electrochemical pathways in self-organizing biological entities
allow information flows that synchronize much faster than occurs in similar-scale
structures made of materials like silicon and metal. The constituent materials of
instruments are significant; an instrument made of metal produces a different tone to
one made of wood. Surrogate musicianship allows us to speak of the different
output of sound between a musician made of dry plastic, alloy and electricity from
the expressivity of one made of wet, organic materials. Furthermore, surrogate
musicians will offer a unique musicality that is accorded to their biological mate-
riality and the consequent relations between surrogates and donors.

As a new framework of music production, surrogate musicianship will change
the approaches of human musicians. The future evolution of new music will occur
through advances in our increased understanding of biology and the inherent
coupling of sound with the body on the hormonal and cellular level. We are able to
deconstruct, manipulate and re-assemble the microscopic building blocks of life in
completely new ways; human bodies are more malleable that ever before. The
potential and ramifications for these biotechnologies extend beyond music. As an
engaging and provocative experimental artwork that applies iPSc and neural
interfaces for aesthetic purposes, cellF opens discussions concerning the future use
of stem cells and the potential to bioengineer brains. By showing audiences beyond
the scientific community what is possible, the artists and the work ask questions
about the use and misuse of biotechnologies, and how and why they are applied. In
so doing, the technology is problematized, rather than simply celebrated. cellF
invites us to grapple with these questions, while the stakes are quite low, in an
attempt to initiate public debate and to critique a position that considers techno-
logical progress a necessary good. As our use of the terms ‘in-vitro intelligence’ and
‘surrogate musician’ show, emerging biotechnologies pose difficult questions about
what counts as a life, and what sorts of lives matter.
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